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State estimation problems that use relative observations have
immanent unobservable directions. Traditional causal estimators,
however, usually gain spurious information on the unobservable
directions, leading to over-confident covariance inconsistent to the
actual estimator errors.

The consistency problem of fixed-lag smoothers (FLSs) has only
been attacked by the first estimate Jacobian (FEJ) technique because of
the complexity to analyze their observability property. But the FEJ has
several drawbacks hampering its wide adoption.

To ensure the consistency of a FLS, this paper introduces the right
invariant error formulation into the FLS framework. To our knowledge,
we are the first to analyze the observability of a FLS with the right
invariant error.

By applying the proposed FLS to the monocular visual inertial
simultaneous localization and mapping (SLAM) problem, we confirm
that the method consistently estimates covariance similarly to a batch
smoother in simulation and that our method achieved comparable
accuracy as traditional FLSs on real data.

Abstract

We prove that right invariant formulation ensures consistency of FLSs.

Methodology

Simulation

Results

1. We introduce the right invariant error formulation into the FLS
framework and analyze its observability directly with the linearized
system, which has much lower analysis complexity than
observability matrices.

2. As a byproduct, we find that landmarks parameterized in a local
camera frame and sensor parameters like biases do not affect the
estimator consistency.

3. We prove that the right invariant error formulation ensures the
observability property of a FLS without artificially correcting
Jacobians like the first estimate Jacobian method.

4. The proposed right invariant FLS is applied to a monocular visual
inertial SLAM problem. Its consistency is confirmed by simulation,
and its practicality is verified on the EuRoC benchmark.

Conclusion

Introduction
1. Does marginalization cause spurious information to accrue in

observable directions?
2. Use the keyframe scheme to improve odometry accuracy.
3. The state errors defined on the Lie group 𝑆𝐸2(3) (which represents

position, velocity, and rotation jointly) achieve much better
consistency than traditional errors defined on 𝑆𝑂 3 × ℝ3 . But
Kontiki [6] has argued that split interpolation on 𝑆𝑂 3 × ℝ3 is better
than joint interpolation on 𝑆𝐸 3 for reconstruction. Do the two
observations conflict?

Future work

Existing approaches to ensure consistency of fixed lag smoothers stem
from the first estimate Jacobian (FEJ) technique. For instance, it is used
in OKVIS [2], DSO [3]. But it has several limitations.

This work proposes to use right invariant formulation to keep
consistency of FLSs.

(Left) The simulation steup. (Right) RI-FLS achieves NEES values similar to iSAM2, while the
incremental FLS and the batch FLS shows inconsistency with growing NEES over time.

On the EuRoC benchmark [5], the proposed RI-FLS achieved
comparable accuracy to the established method, incremental FLS of a
traditional error formulation.

1. To minimize the nonlinear cost function 𝐸 of an estimation problem, it
is converted into a linearized system.

3. The local parameters, e.g., landmarks expressed in a host camera
frame, and IMU biases, do not affect nullspace matrix.

4. For right invariant errors, the nullspace matrix is independent of the
pose and velocity of the agent. It depends on only gravity vector g.

5. The RI-FLS is consistent under a mild assumption that the left
Jacobians of the pose and velocity residual errors are roughly identity.

1. Estimation with relative measurements has unobservable directions.
2. Traditional geometrical estimators, e.g., filters, and FLSs, gain

spurious info along unobservable directions.
3. This leads to rank deficient observability matrices, and inconsistent

covariances where standard deviations are less than theoretical
values.

(Left) Inconsistent 𝜎 and actual errors of heading by a visual inertial odometry method,
MSCKF [1], and (right) the NEES (normalized estimation error squared) values for position,
orientation, and pose, grow larger than theoretical values, 3 for orientation, and 6 for pose.
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For visual inertial SLAM problem, rotation about 

gravity ϕ and global tranalation 𝐭 is unobservable.

𝐱0, ⋯ , 𝐱𝑘: navigation variables

𝐟1, ⋯ , 𝐟𝐿: landmark variables

ϕ: rotation about gravity

𝐭: 3D translation

2. The fixed-lag smoother marginalizes variables and measurements to
bound the problem size. These marginalized measurements are turned
into linear factors.
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For traditional errors, the nullspace column corresponding to rotation
about gravity disappears, i.e.,
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The camera and IMU system traverses a virtual room with landmarks
on four walls.
For visual inertial SLAM, we compared our RI-FLS, the incremental FLS
in GTSAM [4], the batch FLS in GTSAM, and iSAM2 in GTSAM.
RI-FLS is consistent in terms of NEES similar to iSAM2, while
incremental FLS and batch FLS are inconsistent.

RMSE of position, orientation, gyro bias, and accelerometer bias, computed over 100 runs for
estimators including incremental FLS, batch FLS, iSAM2, and right invariant FLS.
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In terms of RMSE in each dimension of position, orientation, gyro bias,
and accelerometer bias, RI-FLS outperformed other FLSs in position
accuracy, and achieved good orientation accuracy.
As expected, iSAM2 achieved best accuracy for all these variables.
Incremental FLS and batch FLS had an issue in constraining errors on
one horizontal direction of the gyro bias.

Absolute translation error (ATE) RMS averaged over 3
runs on several EuRoC sessions for incremental FLS,
RI-FLS, and RI-FLS with exact IMU factor Jacobians.

(Left) MSCKF [1] with the FEJ technique achieves NEES (normalized estimation error squared)
close to theoretical values, 3 for position, 3 for orientation, and 6 for pose. (Right) OKVIS [2]
also achieves NEES values close to theoretical values with the FEJ technique.

RI-FLS trajectory top view on MH_01
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